

TEAM: DEC 1702A ALGONA DISTRIBUTION SYSTEM DESIGN

CLIENT: ALGONA MUNICIPAL UTILITY Advisor: Kimber Anner Yuxuan Yuan, Shengxin Mao, Changlin Li

TRANSFORMER

- - Midwestern U.S. state
- Algona
 - A growing city of 5560 people.
- Location in the north of Iowa
- Algona Municipal Utilities
- Industrial Consumer Electric Geographic Information System (GIS) Map
 - Second largest Industrial Consumer
 - Primary Feeder EB 5 Green Line
 - Secondary Feeder 1 Pink line Old conductor and vegetation
 - problem Two transformers and meters

Figure 1 lowa google map

Figure 2 Algona google map

Figure 3 Industrial Consumer GIS Map

CURRENT DATA

- North meter average daily Power Factor 0.832
- South meter average daily Power Factor

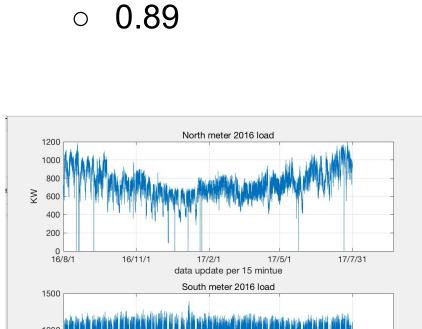


Figure 4 Two meter 2016 KW consumption

17/2/1 17 data update per 15 min

Figure 3 Two meter daily PF

- North meter 2016 load
 - o Max 1196.8 KW
 - 8 outages events
 - Total 15 hours
- South meter 2016 load
 - o Max 1395.2
- 17 outages events
- Total 35 hours

Figure 11 Milsoft Utility Solutions

MILSOFT Utility Solutions

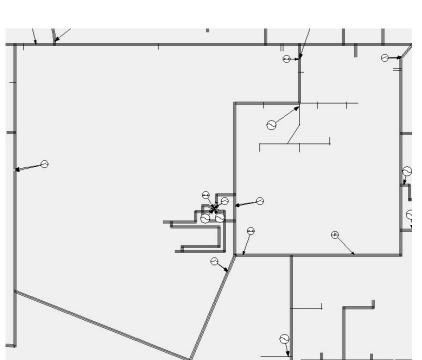
ENGINEERING

Figure 12 DGR Engineering

Milsoft

Figure 5 Brief power system process

SIMULATION DETAIL


Power Distribution System

provides more than a thousand electric utilities

DGR Engineering

ower Supply From Generation to End-Use Customer

DeWild Grant Reckert

• The final state of delivery of

Directly carry electricity from

upper level system to

individual consumers

electric power

Figure 13 Original Milsoft Model

Origin Modell information: Operational

- Primary Feeder EB5 normal Close
- Feeder 1 normal Open
- Transformer 2000KVA and 1500KVA

Figure 14 Model I

United States Department of Agriculture Rural Utility Service (RUS) as the construction standards of pad mounted transformer.

Pad Mounted Transformer:

4200 KVA

Around \$17/KVA

- Around total \$71,400 4000 KVA
- Around total \$68,000
- 1500 KVA Around total \$25,500

Other Parameter Data: Three Phase

- 60 HZ
- Percentage of Impedance: 5%-7%
- Cooling type: OA/FA (Oil-Immersed, forced cool)

Figure 6 Pad Mounted Transformer Specifications

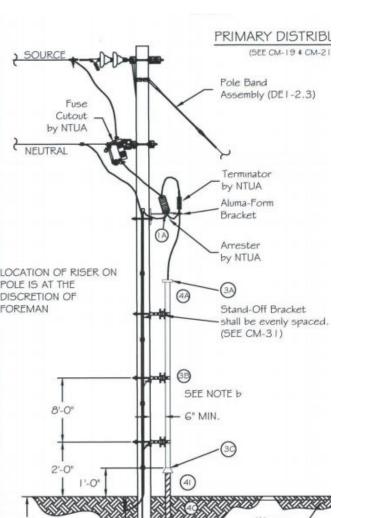

Figure 7 Pad Mounted Transformer

Figure 8 ABB Inc.

United States Department of Agriculture Rural Utility Service (RUS) as the construction standards of Underground and Overhead riser.

FEEDER TYPE

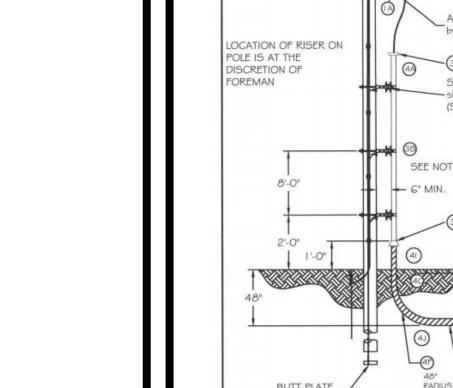
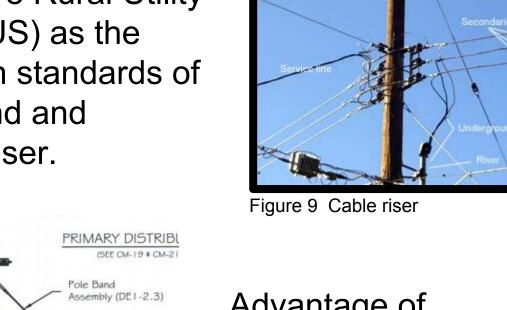



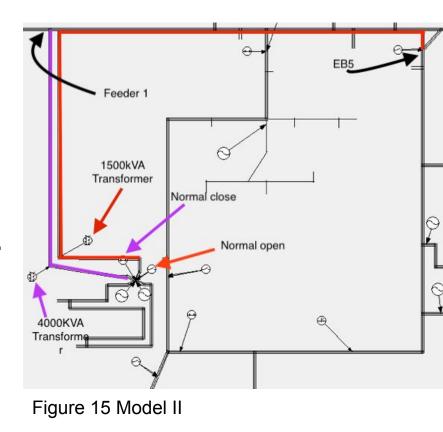
Figure 10 Cable riser Specifications

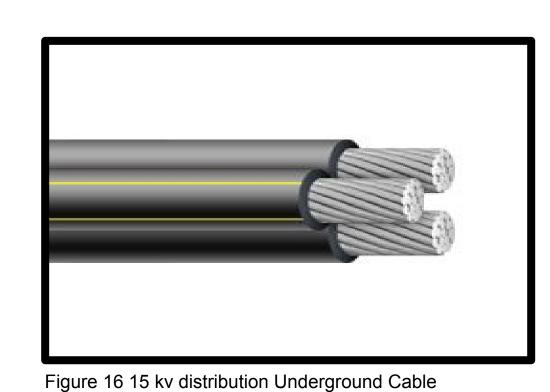
Advantage of Underground cable:

 Low Transmission loss

Absorb Emergency

power loads


- Less Susceptible to the impacts of severe weather
- Less Maintenance Cost


Model I(AMI Data): Operational Feeder EB5 normal Closed Primary Feeder 1 normal Closed

- Transformer 4200 KVA and 1500KVA.
- Feeder 1: 350AL 220 EPR 1/3-90. Capacity 408A
- EB5: 4/0AL 220 EPR 1/3-90. Capacity 326A

Model II(DGR model data):

- Operational
 - Feeder EB5 normal Close
 - Primary Feeder 1 normal Open
- Transformer 4000 KVA and 1500KVA.
- Feeder 1: 4/0AL 220 EPR FUL 105. Capacity 350A
- EB5: 4/0AL 220 EPR 1/3-90.
- Capacity 326A



- 15KV
- Underground
- Distribution Cable
- Okonite Production

Cable Type Data:

- 4/0, 220 mils, Al, EPR, ⅓ neutral \$4.63/ft
- 4/0, 220 mils, Al, EPR, full neutral Special Order
- 350, 220 mils,Al, EPR, ⅓ neutral \$6.04/ft
- EPR: Ethylene Propylene Rubber (Type of Synthetic Elastomer) * 1/3 Neutral & Full Neutral: Different carrying current

Conduit Pipe: Sch 40 PVC

\$1.15/ft

- Sch 13.5 HDPE
- Special Order

IOWA STATE UNIVERSITY

College of Engineering